Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.755
Filtrar
1.
Environ Sci Technol ; 58(15): 6605-6615, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38566483

RESUMO

Microbial nitrogen metabolism is a complicated and key process in mediating environmental pollution and greenhouse gas emissions in rivers. However, the interactive drivers of microbial nitrogen metabolism in rivers have not been identified. Here, we analyze the microbial nitrogen metabolism patterns in 105 rivers in China driven by 26 environmental and socioeconomic factors using an interpretable causal machine learning (ICML) framework. ICML better recognizes the complex relationships between factors and microbial nitrogen metabolism than traditional linear regression models. Furthermore, tipping points and concentration windows were proposed to precisely regulate microbial nitrogen metabolism. For example, concentrations of dissolved organic carbon (DOC) below tipping points of 6.2 and 4.2 mg/L easily reduce bacterial denitrification and nitrification, respectively. The concentration windows for NO3--N (15.9-18.0 mg/L) and DOC (9.1-10.8 mg/L) enabled the highest abundance of denitrifying bacteria on a national scale. The integration of ICML models and field data clarifies the important drivers of microbial nitrogen metabolism, supporting the precise regulation of nitrogen pollution and river ecological management.


Assuntos
Desnitrificação , Nitrogênio , Nitrogênio/análise , Rios , Nitrificação , China , Bactérias
2.
Water Sci Technol ; 89(7): 1725-1740, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619899

RESUMO

The algal-bacterial shortcut nitrogen removal (ABSNR) process can be used to treat high ammonia strength wastewaters without external aeration. However, prior algal-bacterial SNR studies have been conducted under fixed light/dark periods that were not representative of natural light conditions. In this study, laboratory-scale photo-sequencing batch reactors (PSBRs) were used to treat anaerobic digester sidestream under varying light intensities that mimicked summer and winter conditions in Tampa, FL, USA. A dynamic mathematical model was developed for the ABSNR process, which was calibrated and validated using data sets from the laboratory PSBRs. The model elucidated the dynamics of algal and bacterial biomass growth under natural illumination conditions as well as transformation processes for nitrogen species, oxygen, organic and inorganic carbon. A full-scale PSBR with a 1.2 m depth, a 6-day hydraulic retention time (HRT) and a 10-day solids retention time (SRT) was simulated for treatment of anaerobic digester sidestream. The full-scale PSBR could achieve >90% ammonia removal, significantly reducing the nitrogen load to the mainstream wastewater treatment plant (WWTP). The dynamic simulation showed that ABSNR process can help wastewater treatment facilities meet stringent nitrogen removal standards with low energy inputs.


Assuntos
Amônia , Nitrogênio , Nitrogênio/análise , Desnitrificação , Estações do Ano , Reatores Biológicos/microbiologia , Águas Residuárias
3.
Chemosphere ; 355: 141898, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579951

RESUMO

Global warming trend is accelerating. This study proposes a green and economical methane (CH4) control strategy by plant combination in constructed wetlands (CWs). In this study, a single planting of Acorus calamus L. hybrid constructed wetland (HCW-A) and a mixed planting of Acorus calamus L. and Eichhornia crassipes (Mart.) Solms hybrid constructed wetland (HCW-EA) were constructed. The differences in nitrogen removal performance and CH4 emissions between HCW-A and HCW-EA were compared and analyzed. The findings indicated that HCW-EA demonstrated significant improvements over HCW-A, with NH4+-N and TN removal rates increasing by 21.61% and 16.38% respectively, and CH4 emissions decreased by 43.36%. The microbiological analysis results showed that plant combination promoted the enrichment of Proteobacteria, Alphaproteobacteria and Bacillus. More nitrifying bacteria carrying nxrA genes and denitrifying bacteria carrying nirK genes accelerated the nitrogen transformation process. In addition, the absolute abundance ratio of pmoA/mcrA increased, reducing the release of CH4.


Assuntos
Desnitrificação , Áreas Alagadas , Nitrogênio , Plantas , Genes Bacterianos
4.
Water Sci Technol ; 89(6): 1454-1465, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38557711

RESUMO

We used bench-scale tests and mathematical modeling to explore chemical oxygen demand (COD) removal rates in a moving-bed biofilm reactor (MBBR) for winery wastewater treatment, using either urea or nitrate as a nitrogen source. With urea addition, the COD removal fluxes ranged from 34 to 45 gCOD/m2-d. However, when nitrate was added, fluxes increased up to 65 gCOD/m2-d, twice the amount reported for aerobic biofilms for winery wastewater treatment. A one-dimensional biofilm model, calibrated with data from respirometric tests, accurately captured the experimental results. Both experimental and modelling results suggest that nitrate significantly increased MBBR capacity by stimulating COD oxidation in the deeper, oxygen-limited regions of the biofilm. Our research suggests that the addition of nitrate, or other energetic and broadly used electron acceptors, may provide a cost-effective means of covering peak COD loads in biofilm processes for winery or another industrial wastewater treatment.


Assuntos
Eliminação de Resíduos Líquidos , Purificação da Água , Eliminação de Resíduos Líquidos/métodos , Nitratos , Biofilmes , Reatores Biológicos , Compostos Orgânicos , Purificação da Água/métodos , Nitrogênio , Ureia , Desnitrificação
5.
Water Sci Technol ; 89(6): 1466-1481, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38557712

RESUMO

Floating treatment wetlands (FTWs) have the potential to improve the quality of wastewater discharges, yet design basics are unavailable to size these systems. This study investigates the effect of FTWs' coverage ratio and hydraulic retention time on agri-food wastewater treatment. This was studied in a pilot-scale experiment comprising four lagoons (6.5 m3 each) fed with real effluent from an existing tertiary treatment lagoon. An evaluation of FTW of different sizes (L24, L48, and L72 representing 24, 48, and 72% of pilot lagoons surface areas) and a control, L0 (without FTW), was performed over 16 months. Overall, L72 and L48 moderately improved total nitrogen (TN) mass removal compared to L0 (p < 0.05), while L24 exhibited similar TN mass removal (p = 0.196). The highest improvement was observed for L72, exhibiting up to 55% (mean of 13%) greater N mass removal than the control. The net increase in TN removal by FTWs was mainly related to denitrification, promoted by decreasing dissolved oxygen for increasing FTW coverage ratio. Residence time, temperature, and dissolved oxygen were the main parameters driving TN removal by FTWs. Retrofitting existing lagoons with FTW can facilitate N retrieval through plant harvesting, thereby reducing N remobilization from sediment (common in conventional lagoons).


Assuntos
Poluentes Químicos da Água , Áreas Alagadas , Eliminação de Resíduos Líquidos , Desnitrificação , Nitrogênio/análise , Poluentes Químicos da Água/análise , Oxigênio
6.
Water Sci Technol ; 89(6): 1583-1594, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38557720

RESUMO

Low-energy nitrogen removal from ammonium-rich wastewater is crucial in preserving the water environment. A one-stage nitritation/anammox process with two inflows treating ammonium-containing wastewater, supplied from inside and outside the wound filter, is expected to stably remove nitrogen. Laboratory-scale reactors were operated using different start-up strategies; the first involved adding nitritation inoculum after anammox biomass formation in the filter, which presented a relatively low nitrogen removal rate (0.171 kg N/m3 · d), at a nitrogen loading rate of 1.0 kg N/m3 · d. Conversely, the second involved the gradual cultivation of anammox and nitritation microorganisms, which increased the nitrogen removal rate (0.276 kg N/m3 · d). Furthermore, anammox (Candidatus Brocadia) and nitritation bacteria (Nitrosomonadaceae) coexisted in the biofilm formed on the filter surface. The abundance of nitritation bacteria (10.5%) in the reactor biofilm using the second start-up strategy was higher than that using the first (3.7%). Thus, the two-inflow nitritation/anammox process effectively induced habitat segregation using a suitable start-up strategy.


Assuntos
Compostos de Amônio , Microbiota , Águas Residuárias , Oxidação Anaeróbia da Amônia , Oxirredução , Reatores Biológicos/microbiologia , Bactérias , Biofilmes , Nitrogênio , Esgotos , Desnitrificação
7.
J Environ Manage ; 357: 120843, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38588621

RESUMO

Nitrite-dependent anaerobic methane oxidation (n-DAMO) is a novel denitrification process that simultaneously further removes and utilizes methane from anaerobic effluent from wastewater treatment plants. However, the metabolic activity of n-DAMO bacteria is relative low for practical application. In this study, conductive magnetite was added into lab-scale sequencing batch reactor inoculated with n-DAMO bacteria to study the influence on n-DAMO process. With magnetite amendment, the nitrogen removal rate could reach 34.9 mg N·L-1d-1, nearly 2.5 times more than that of control group. Magnetite significantly facilitated the interspecies electron transfer and built electrically connected community with high capacitance. Enzymatic activities of electron transport chain were significantly elevated. Functional gene expression and enzyme activities associated with nitrogen and methane metabolism had been highly up-regulated. These results not only propose a useful strategy in n-DAMO application but also provide insights into the stimulating mechanism of magnetite in n-DAMO process.


Assuntos
Óxido Ferroso-Férrico , Nitritos , Nitritos/metabolismo , Transporte de Elétrons , Anaerobiose , Metano , Elétrons , Desnitrificação , Oxirredução , Bactérias/metabolismo , Bactérias Anaeróbias/metabolismo , Nitrogênio/metabolismo , Reatores Biológicos/microbiologia
8.
Water Environ Res ; 96(4): e11017, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38565318

RESUMO

This study explored the implementation of mainstream partial denitrification with anammox (PdNA) in the second anoxic zone of a wastewater treatment process in an integrated fixed film activated sludge (IFAS) configuration. A pilot study was conducted to compare the use of methanol and glycerol as external carbon sources for an IFAS PdNA startup, with a goal to optimize nitrogen removal while minimizing carbon usage. The study also investigated the establishment of anammox bacteria on virgin carriers in IFAS reactors without the use of seeding, and it is the first IFAS PdNA startup to use methanol as an external carbon source. The establishment of anammox bacteria was confirmed in both reactors 102 days after startup. Although the glycerol-fed reactor achieved a higher steady-state maximum ammonia removal rate because of anammox bacteria (1.6 ± 0.3 g/m2/day) in comparison with the methanol-fed reactor (1.2 ± 0.2 g/m2/day), both the glycerol- and methanol-fed reactors achieved similar average in situ ammonia removal rates of 0.39 ± 0.2 g/m2/day and 0.40 ± 0.2 g/m2/day, respectively. Additionally, when the upstream ammonia versus NOx (AvN) control system maintained an ideal ratio of 0.40-0.50 g/g, the methanol-fed reactor attained a lower average effluent TIN concentration (3.50 ± 1.2 mg/L) than the glycerol-fed reactor (4.43 ± 1.6 mg/L), which was prone to elevated nitrite concentrations in the effluent. Overall, this research highlights the potential for PdNA in IFAS configurations as an efficient and cost-saving method for wastewater treatment, with methanol as a viable carbon source for the establishment of anammox bacteria. PRACTITIONER POINTS: Methanol is an effective external carbon source for an anammox startup that avoids the need for costly alternative carbon sources. The methanol-fed reactor demonstrated higher TIN removal compared with the glycerol-fed reactor because of less overproduction of nitrite. Anammox bacteria was established in an IFAS reactor without seeding and used internally stored carbon to reduce external carbon addition. Controlling the influent ammonia versus NOx (AvN) ratio between 0.40 and 0.50 g/g allowed for low and stable TIN effluent conditions.


Assuntos
Compostos de Amônio , Esgotos , Esgotos/microbiologia , Amônia , Desnitrificação , Metanol , Glicerol , Nitritos , Projetos Piloto , Oxidação Anaeróbia da Amônia , Reatores Biológicos/microbiologia , Bactérias , Nitrogênio , Oxirredução
9.
Environ Geochem Health ; 46(5): 151, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578445

RESUMO

Nitrate attenuation during river bank infiltration is the key process for reducing nitrogen pollution. Temperature is considered to be an important factor affecting nitrate attenuation. However, the magnitude and mechanism of its impact have not been clear for a long time. In this study, the effects of temperature and temperature gradient on the nitrate denitrification rate were investigated via static batch and dynamic soil column simulation experiments. The results showed that temperature had a significant effect on the denitrification rate. Temperature effects were first observed in denitrifying bacteria. At low temperatures, the microorganism diversity was low, resulting in a lower denitrification rate constant. The static experimental results showed that the denitrification rate at 19 °C was approximately 2.4 times that at 10 °C. The dynamic soil column experiment established an exponential positive correlation between the nitrate denitrification decay kinetic constant and temperature. The affinity of denitrifying enzymes for nitrate in the reaction substrate was ordered as follows: decreasing temperature gradient (30 °C → 10 °C) > zero temperature gradient (10 °C) > increasing temperature gradient condition (0 °C → 10 °C). This study provides a theoretical basis for the biogeochemical processes underlying river bank infiltration, which will help aid in the development and utilization of groundwater resources.


Assuntos
Nitratos , Rios , Nitratos/análise , Temperatura , Desnitrificação , Compostos Orgânicos , Nitrogênio/análise , Solo/química
10.
J Environ Sci (China) ; 142: 129-141, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38527879

RESUMO

The ammonium exceedance discharge from sewage treatment plants has a great risk to the stable operation of subsequent constructed wetlands (CWs). The effects of high ammonium shocks on submerged macrophytes and epiphytic biofilms on the leaves of submerged macrophytes in CWs were rarely mentioned in previous studies. In this paper, the 16S rRNA sequencing method was used to investigate the variation of the microbial communities in biofilms on the leaves of Vallisneria natans plants while the growth characteristics of V. natans plants were measured at different initial ammonium concentrations. The results demonstrated that the total chlorophyll and soluble sugar synthesis of V. natans plants decreased by 51.45% and 57.16%, respectively, and malondialdehyde content increased threefold after 8 days if the initial NH4+-N concentration was more than 5 mg/L. Algal density, bacterial quantity, dissolved oxygen, and pH increased with high ammonium shocks. The average removal efficiencies of total nitrogen and NH4+-N reached 73.26% and 83.94%, respectively. The heat map and relative abundance analysis represented that the relative abundances of phyla Proteobacteria, Cyanobacteria, and Bacteroidetes increased. The numbers of autotrophic nitrifiers and heterotrophic nitrification aerobic denitrification (HNAD) bacteria expanded in biofilms. In particular, HNAD bacteria of Flavobacterium, Hydrogenophaga, Acidovorax, Acinetobacter, Pseudomonas, Aeromonas, and Azospira had higher abundances than autotrophic nitrifiers because there were organic matters secreted from declining leaves of V. natans plants. The analysis of the nitrogen metabolic pathway showed aerobic denitrification was the main nitrogen removal pathway. Thus, the nitrification and denitrification bacterial communities increased in epiphytic biofilms on submerged macrophytes in constructed wetlands while submerged macrophytes declined under ammonium shock loading.


Assuntos
Compostos de Amônio , Cianobactérias , Desnitrificação , Nitrogênio/análise , Áreas Alagadas , RNA Ribossômico 16S , Nitrificação , Biofilmes
11.
Sci Total Environ ; 926: 171890, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38521280

RESUMO

A pilot-scale continuous-flow modified anaerobic-anoxic-oxic (MAAO) process examined the impact of external carbon sources (acetate, glucose, acetate/propionate) on ammonium assimilation, denitrifying phosphorus removal (DPR), and microbial community. Acetate exhibited superior efficacy in promoting the combined process of ammonia assimilation and DPR, enhancing both to 50.0 % and 60.0 %, respectively. Proteobacteria and Bacteroidota facilitated ammonium assimilation, while denitrifying phosphorus-accumulating organisms (DPAOs) played a key role in nitrogen (N) and phosphorus (P) removal. Denitrifying glycogen-accumulating organisms (DGAOs) aided N removal in the anoxic zone, ensuring stable N and P removal and recovery. Acetate/propionate significantly enhanced DPR (77.7 %) and endogenous denitrification (37.9 %). Glucose favored heterotrophic denitrification (29.6 %) but had minimal impact on ammonium assimilation. These findings provide valuable insights for wastewater treatment plants (WWTPs) seeking efficient N and P removal and recovery from low-strength wastewater.


Assuntos
Compostos de Amônio , Águas Residuárias , Esgotos/microbiologia , Eliminação de Resíduos Líquidos , Anaerobiose , Fósforo , Carbono , Propionatos , Desnitrificação , Reatores Biológicos/microbiologia , Nitrogênio , Acetatos , Glucose
12.
Sci Total Environ ; 926: 171929, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38522528

RESUMO

The emerging nitrogen removal process known as CANDAN (Complete Ammonium and Nitrate removal via Denitratation-Anammox over Nitrite) has been developed in Sequencing Batch Reactors (SBRs). Yet, starting up and maintaining stability in continuous-flow reactors remain challenging. This study explores the feasibility of transitioning the CANDAN process from an anammox-dominated process by introducing appropriate external organics to facilitate indigenous nitrite-producing denitrification community in an Upflow Anaerobic Sludge Blanket (UASB) reactor. 150-day operation results indicate that under feeding rates of domestic wastewater at 0.54 L/h and nitrate-containing wastewater at 1.08 L/h, excellent N removal was achieved, with effluent TN below 10.0 mg N/L. Adding external sodium acetate at a COD/NO3--N = 2.0 triggered denitratation, ex-situ denitrification activity tests showed increased nitrite production rates, maintaining the nitrate-to-nitrite transformation ratio (NTR) above 90 %. Consequently, anammox activity was consistently maintained, dominating Total Nitrogen (TN) removal with a contribution as high as 78.3 ± 8.0 %. Anammox functional bacteria, Brocadia and Kuenenia were identified and showed no decrease throughout the operation, indicating the robustness of the anammox process. Notably, the troublesome of sludge flotation, did not occur, also contributing to sustained outstanding performance. In conclusion, this study advances our understanding of the synergistic interplay between anammox and denitrifying bacteria in the Anammox-UASB system, offering technical insights for establishing a stable continuous-flow CANDAN process for simultaneous ammonium and nitrate removal.


Assuntos
Compostos de Amônio , Esgotos , Nitritos , Águas Residuárias , Nitratos , Desnitrificação , Oxidação Anaeróbia da Amônia , Reatores Biológicos/microbiologia , Oxirredução , Anaerobiose , Nitrogênio/análise , Bactérias
13.
Sci Total Environ ; 926: 171978, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38537813

RESUMO

Low temperatures limit the denitrification wastewater in activated sludge systems, but this can be mitigated by addition of redox mediators (RMs). Here, the effects of chlorophyll (Chl), 1,2-naphthoquinone-4-sulfonic acid (NQS), humic acid (HA), and riboflavin (RF), each tested at three concentrations, were compared for denitrification performance at low temperature, by monitoring the produced extracellular polymeric substances (EPS), and characterizing microbial communities and their metabolic potential. Chl increased the denitrification rate most, namely 4.12-fold compared to the control, followed by NQS (2.62-fold increase) and HA (1.35-fold increase), but RF had an inhibitory effect. Chl promoted the secretion of tryptophan-like and tyrosine-like proteins in the EPS and aided the conversion of protein from tightly bound EPS into loosely bound EPS, which improved the material transfer efficiency. NQS, HA, and RF also altered the EPS components. The four RMs affected the microbial community structure, whereby both conditionally abundant taxa (CAT) and conditionally rare or abundant taxa (CRAT) were key taxa. Among them, CRAT members interacted most with the other taxa. Chl promoted Flavobacterium enrichment in low-temperature activated sludge systems. In addition, Chl promoted the abundance of nitrate reduction genes narGHI and napAB and of nitrite reduction genes nirKS, norBC, and nosZ. Moreover, Chl increased abundance of genes involved in acetate metabolism and in the TCA cycle, thereby improving carbon source utilization. This study increases our understanding of the enhancement of low-temperature activated sludge by RMs, and demonstrates positive effects, in particular by Chl.


Assuntos
Microbiota , Esgotos , Esgotos/microbiologia , Desnitrificação , Polímeros/química , Temperatura , Oxirredução , Reatores Biológicos/microbiologia , Nitrogênio
14.
Sci Total Environ ; 926: 171963, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38537835

RESUMO

Significant research is focused on the ability of riparian zones to reduce groundwater nitrate contamination. Owing to the extremely high redox activity of nitrate, naturally existing electron donors, such as organic matter and iron minerals, are crucial in facilitating nitrate reduction in the riparian zone. Here, we examined the coexistence of magnetite, an iron mineral, and nitrate, a frequently observed coexisting system in sediments, to investigate nitrate reduction features at various C/N ratios and evaluate the response of microbial communities to these settings. Additionally, we aimed to use this information as a foundation for examining the effect of nutritional conditions on the nitrate reduction process in magnetite-present environments. These results emphasise the significance of organic matter in enabling dissimilatory nitrate reduction to ammonium (DNRA) and enhancing the connection between nitrate reduction and iron in sedimentary environments. In the later phases of nitrate reduction, nitrogen fixation was the prevailing process in low-carbon environments, whereas high-carbon environments tended to facilitate the breakdown of organic nitrogen. High-throughput sequencing analysis revealed a robust association between C/N ratios and alterations in microbial community composition, providing insights into notable modifications in essential functioning microorganisms. The nitrogen-fixing bacterium Ralstonia is more abundant in ecosystems with scarce organic matter. In contrast, in settings rich in organic matter, microorganisms, such as Acinetobacter and Clostridia, which may produce ammonia, play crucial roles. Moreover, the population of iron bacteria grows in such an environment. Hence, this study proposes that C/N ratios can influence Fe(II)/Fe(III) conversions and simultaneously affect the process of nitrate reduction by shaping the composition of specific microbial communities.


Assuntos
Compostos de Amônio , Nitratos , Nitratos/análise , Óxido Ferroso-Férrico , Rios , Ecossistema , Compostos Férricos , Desnitrificação , Ferro , Nitrogênio , Carbono , Oxirredução
15.
Sci Total Environ ; 926: 171993, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38547967

RESUMO

Calcium nitrate addition is economically viable and highly efficient for the in-situ treatment of contaminated sediment and enhancement of surface water quality, particularly in rural areas. However, conventional nitrate addition technologies have disadvantages such as excessive nitrate release, sharp ammonium increase, and weakened sulfide oxidation efficiency owing to rapid nitrate injection into the sediment. To resolve these defects, we propose a piped-slow-release (PSR) calcium nitrate dosing method and investigate its treatment efficiency and underlying mechanisms. The results illustrated that PSR dosing had a longer half-life (t1/2 = 5.08 days) and a lower maximum apparent nitrate escape rate of 1.28 % than conventional nitrate injection and other dosing methods. In addition, the PSR managed the inorganic nitrogen release into the overlying water, and after the treatment, the nitrate, ammonium, and nitrite concentrations of 0 mg/L, 8.60 mg/L, and 0 mg/L on day 28 were close to those of the control group (0 mg/L, 8.76 mg/L, and 0 mg/L, respectively). Moreover, the PSR method maintained a moderate nitrate concentration of approximately 3000 mg/L in sediment interstitial water by its controlled-release design, thus greatly enhancing the sulfide oxidation efficiency by relieving the inhibitory effects of high nitrate concentrations, with 83.0 % sulfide being eradicated within 5 days. Sulfide-ferrous nitrate reduction (denitrification and dissimilatory nitrate reduction to ammonium) genera (e.g., Sulfurimonas, Thiobacillus, and Thioalkalispira) were successively enhanced and dominated the microbial community, and the related functional genes displayed high relative abundances. These results imply that the PSR dosing method for calcium nitrate, characterized by flexible operation, high efficiency, low cost, and controllable processes, is appropriate for remediating black-odorous sediment in rural areas.


Assuntos
Compostos de Amônio , Compostos de Cálcio , Nitratos , Odorantes , Sulfetos , Nitrogênio , Oxirredução , Desnitrificação
16.
Sci Total Environ ; 926: 172073, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38554959

RESUMO

Nitrogen is an essential nutrient in the environment that exists in multiple oxidation states in nature. Numerous microbial processes are involved in its transformation. Knowledge about very complex N cycling has been growing rapidly in recent years, with new information about associated isotope effects and about the microbes involved in particular processes. Furthermore, molecular methods that are able to detect and quantify particular processes are being developed, applied and combined with other analytical approaches, which opens up new opportunities to enhance understanding of nitrogen transformation pathways. This review presents a summary of the microbial nitrogen transformation, including the respective isotope effects of nitrogen and oxygen on different nitrogen-bearing compounds (including nitrates, nitrites, ammonia and nitrous oxide), and the microbiological characteristics of these processes. It is supplemented by an overview of molecular methods applied for detecting and quantifying the activity of particular enzymes involved in N transformation pathways. This summary should help in the planning and interpretation of complex research studies applying isotope analyses of different N compounds and combining microbiological and isotopic methods in tracking complex N cycling, and in the integration of these results in modelling approaches.


Assuntos
Desnitrificação , Nitrogênio , Nitrogênio/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Isótopos , Isótopos de Nitrogênio
17.
Sci Total Environ ; 926: 172065, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38556008

RESUMO

As global anthropogenic nitrogen inputs continue to rise, nitrite-dependent anaerobic methane oxidation (N-DAMO) plays an increasingly significant role in CH4 consumption in lake sediments. However, there is a dearth of knowledge regarding the effects of anthropogenic activities on N-DAMO bacteria in lakes in the cold and arid regions. Sediment samples were collected from five sampling areas in Lake Ulansuhai at varying depth ranges (0-20, 20-40, and 40-60 cm). The ecological characterization and niche differentiation of N-DAMO bacteria were investigated using bioinformatics and molecular biology techniques. Quantitative PCR confirmed the presence of N-DAMO bacteria in Lake Ulansuhai sediments, with 16S rRNA gene abundances ranging from 1.72 × 104 to 5.75 × 105 copies·g-1 dry sediment. The highest abundance was observed at the farmland drainage outlet with high available phosphorus (AP). Anthropogenic disturbances led to a significant increase in the abundance of N-DAMO bacteria, though their diversity remained unaffected. The heterogeneous community of N-DAMO bacteria was affected by interactions among various environmental characteristics, with AP and oxidation-reduction potential identified as the key drivers in this study. The Mantel test indicated that the N-DAMO bacterial abundance was more readily influenced by the presence of the denitrification genes (nirS and nirK). Network analysis revealed that the community structure of N-DAMO bacteria generated numerous links (especially positive links) with microbial taxa involved in carbon and nitrogen cycles, such as methanogens and nitrifying bacteria. In summary, N-DAMO bacteria exhibited sensitivity to both environmental and microbial factors under various human disturbances. This study provides valuable insights into the distribution patterns of N-DAMO bacteria and their roles in nitrogen and carbon cycling within lake ecosystems.


Assuntos
Microbiota , Nitritos , Humanos , Lagos/microbiologia , Anaerobiose , Metano , RNA Ribossômico 16S/genética , Bactérias/genética , Methanobacteriaceae , Bactérias Anaeróbias/genética , Oxirredução , Nitrogênio , Carbono , Desnitrificação
18.
Chemosphere ; 355: 141731, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38494003

RESUMO

The impact of ciprofloxacin (CIP) in the partial nitrification and anammox biofilm system was investigated by multivariate analysis, focusing on size-fractionated organic components. The CIP dose of 10 µg/L did not inhibit the total nitrogen (TN) removal efficiency, even though the abundance of antibiotic resistant genes (ARGs) (i.e., qnrD, qnrB, qnrA, qnrS, and arcA) was elevated. However, a gradual higher CIP dosing up to 100 µg/L inhibited the TN removal efficiency, while the abundance of ARGs was still increased. Moreover, both the TN removal efficiency and the abundant ARGs were dwindled at 470 µg/L of CIP. As the CIP dose increased from 0 to 100 µg/L, the abundance of high molecular weight (MW) fractions (14,000 to 87,000 Da; 1000 to 14,000 Da) and humic/fulvic acid-like components in the soluble extracellular polymeric substances (HSS) decreased, with more increases of low MW (84-1000 Da; less than 84 Da) fractions and soluble microbial by-products in soluble extracellular polymeric substances (SMPS). Continuously increasing the CIP dose till 470 µg/L, an inverse trend of the changes of these organic components was noted, along with clear reductions of the microbial diversity and richness, and the abundance of key functional genes responsible for nitrogen removal. The predominance of functional gene amoA (related with ammonia oxidizing bacteria) was more significantly with more distribution of SMPS with relatively low MW and less distribution of HSS with relatively high MW, as well as polymer decomposing microorganisms such as Bryobacteraceae and the unclassified Saprospirales.


Assuntos
Ciprofloxacina , Nitrificação , Ciprofloxacina/farmacologia , Oxidação Anaeróbia da Amônia , Antibacterianos/farmacologia , Biofilmes , Reatores Biológicos , Nitrogênio , Esgotos , Oxirredução , Desnitrificação
19.
Chemosphere ; 355: 141707, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521102

RESUMO

The stability of the two-stage partial nitrification-anammox (PN/A) system was compromised by the inappropriate conversion of insoluble organic matter. In response, a sludge redistribution strategy was implemented. Through the redistribution of PN sludge and anammox sludge in the two-stage PN/A system, a transition was made to the Anammox-single stage PN/A (A-PN/A) system. This specific functional reorganization, facilitated by the rapid reorganization of microbial communities, has the potential to significantly decrease the current risk of suppression. The results of the study showed that implementing the sludge redistribution strategy led to a substantial enhancement in the total nitrogen removal rate (TNRR) by 87.51%, accompanied by a significant improvement of 34.78% in the chemical oxygen demand removal rate (CRR). Additionally, this approach resulted in a remarkable two-thirds reduction in the aeration requirements. High-throughput sequencing revealed that the strategy enriched anammox and ammonia-oxidizing bacteria while limiting denitrifying bacteria, as confirmed by quantitative polymerase chain reaction analysis. Furthermore, the principal component analysis revealed that the location and duration of aeration had direct and indirect effects on functional gene expression and the evolution of microbial communities. This study emphasizes the potential benefits of restructuring microbial communities through a sludge redistribution strategy, especially in integrated systems that encounter challenges with suppression.


Assuntos
Nitrificação , Esgotos , Esgotos/microbiologia , Desnitrificação , Oxidação Anaeróbia da Amônia , Reatores Biológicos/microbiologia , Oxirredução , Nitrogênio
20.
Chemosphere ; 355: 141774, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522670

RESUMO

The enrichment of anammox bacteria is a key issue in the application of anammox processes. A new type of reactor - anaerobic baffle biofilm reactor (ABBR) developed from anaerobic baffle reactor (ABR) was filled with columnar packings and established for effective enrichment of anammox bacteria. The flow field analysis showed that, compared with ABR, ABBR narrowed the dead zone so as to improve the substrate transferring performances. Two ABBRs with different types of columnar packings (Packings 1 and Packings 2) were constructed to culture anammox biofilms. Packings 1 consisted of the single-form honeycomb carriers while Packings 2 was modular composite packings consisting of non-woven fabric and honeycomb carriers. The effects of different types of columnar packings on microbial community and nitrogen removal were studied. The ABBR filled with Packings 2 had a higher retention rate of biomass than the ABBR filled with Packings 1, making the anammox start-up period be shortened by 21.28%. The enrichment of anammox bacteria were achieved and the dominant anammox bacteria were Candidatus Brocadia in both R1 and R2. However, there were four genera of anammox bacteria in R2 and one genus of anammox bacteria in R1, and the cell density of anammox bacteria in R2 was 95% higher than that in R1. R2 has the advantage of maintaining excellent and stable nitrogen removal performance at high nitrogen loading rate. The results revealed that the packings composed of two types of carriers may have a better enrichment effect on anammox bacteria. This study is of great significance for the rapid enrichment of anammox bacteria and the technical promotion of anammox process.


Assuntos
Reatores Biológicos , Microbiota , Anaerobiose , Reatores Biológicos/microbiologia , Esgotos/microbiologia , Oxidação Anaeróbia da Amônia , Bactérias/metabolismo , Biofilmes , Nitrogênio/metabolismo , Oxirredução , Desnitrificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...